УДК 537.533.2:539.37

ЗАКОНОМЕРНОСТИ ФОРМИРОВАНИЯ ЭНЕРГЕТИЧЕСКОГО РЕЛЬЕФА МЕТАЛЛИЧЕСКОЙ ПОВЕРХНОСТИ

Лоскутов С. В.

ВВЕДЕНИЕ

Одним из важных направлений развития физики твёрдого тела является изучение изменений в структуре свободной поверхности в процессе деформирования металлов. Деформация металлов в значительной мере связана с развитием дислокационной структуры. При этом приращение свободной поверхности обусловленно выходом на неё дислокаций и образованием различного рода поверхностных кристаллических дефектов. В результате выхода дефектов из объёма на поверхность нарушается равновесие в электронной подсистеме и происходит перераспределение электронов в соответствии с микрогеометрией поверхностного дефекта.

Следить за изменениями в распределении электронной плотности позволяет метод контактной разности потенциалов (КРП) [1]. Важнейшей особенностью метода КРП является возможность определения одной из основных энергетических характеристик металла Φ - работы выхода электрона (РВЭ) [2].

Так как деформационные процессы в значительной степени отражаются в формировании дефектной структуры металлических поверхнос- тей, то необходимо установить взаимосвязь изменений РВЭ с эволюцией кристаллической структуры металлов в процессе деформирования. На пути решения этой проблемы была поставлена задача исследовать закономерности распределения и эволюции РВЭ по поверхности пластически деформированных металлов.

МЕТОДИКА ЭКСПЕРИМЕНТА

Для измерения КРП в настоящей работе использовался метод динамического конденсатора [3]. Цилиндрический электрод сравнения диаметром 1,4 мм изготавливался из золота (Φ = 4,3 эВ). Методика исследования заключалась в растяжении образцов до образования "шейки" текучести и измерении распределений РВЭ по поверхности до и после деформирования. РВЭ определяли сканированием с шагом 1 мм по трём линиям (по краям и в центре вдоль рабочей области образцов) с точностью до 5 мэВ. С целью изучения влияния процессов адсорбции и десорбции молекул воздуха на изменение РВЭ поверхность образцов при измерениях подвергалась воздействию ультрафиолетового облучения (УФО) с помощью ртутной лампы.

В качестве материалов для исследования были использованы поликристаллический алюминий технической чистоты и стали марок Ст.3, ЭП479, ЭП866. Изготавливались образцы с размерами рабочей части $10 \times 5 \times 4$ мм 3 из алюминия и $10 \times 4 \times 2,4$ мм 3 для сталей. Обработка поверхности образцов включала шлифование наждачными шкурками и финишную полировку алмазной пастой. После механической обработки образцы химически полировались и выдерживались до испытаний около месяца с целью установления термодинамического равновесия со средой.

РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТА И ИХ ОБСУЖДЕНИЕ

На рис.1 и рис.2 представлены кривые распределения PBЭ в области "шейки" для исследованных материалов. Все особенности протекания пластического течения металлов отражаются на этих кривых. Так, например, формирование двух участков с максимальной степенью пластического деформирования выражается на кривой 1 рис.1 двумя локальными прогибами. В ряде экспериментов было обнаружено, что для каждого металла существует предельное значение PBЭ, вызванное пластическим деформированием до разрушения.

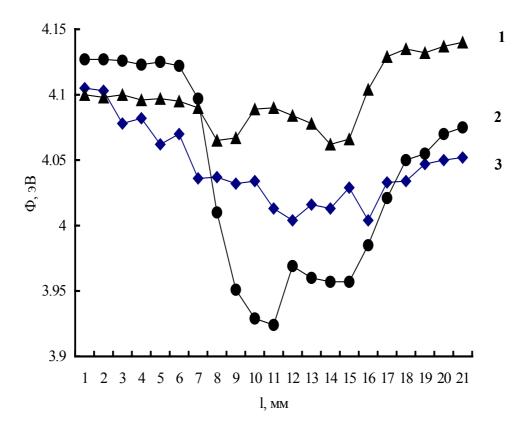


Рис.1. Потенциальный рельеф поверхности металлов после образования "шейки" текучести. Стали марок: 1 – ЭП479; 2 - Ст.3; 3 – ЭП866.

При воздействии УФО на поверхность металлов в процессе изме-рений КРП наблюдается относительное смещение кривых распределения 1 и 2 на рис.2.

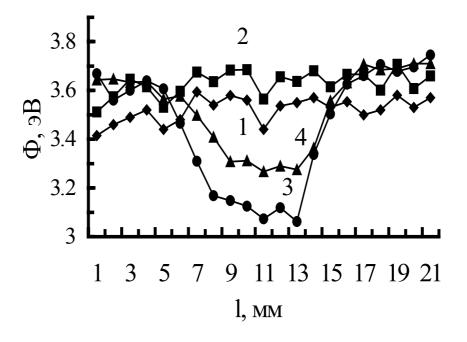


Рис.2. Потенциальный рельеф поверхности алюминия до и после деформирования. До деформирования: 1- без УФО; 2- с УФО; 3- сразу после деформирования; 4- то же через 24 часа.

Причём для алюминия УФО приводит к росту РВЭ, а для сталей и ряда других исследованных материалов (титана, цинка, монокристаллического ниобия, меди) характерно уменьшение РВЭ. Это явление объясняется тем, что адатомы на поверхности металла, поглотив энергию ультрафиолетового излучения, покидают поверхность, изменяя величину электростатического барьера, и, в результате РВЭ изменяется [4]. Направление изменения РВЭ определяется зависимостью, которая является обобщением многочисленных экспериментальных данных [5]. При малой степени заполнения поверхности адатомами с уменьшением концентрации адатомов РВЭ растёт, а при высоких степенях заполнения РВЭ уменьшается с выходом на насыщение. По-видимому, в случае для алюминия характерен участок, где РВЭ растёт с увеличением десорбции.

Формирование кривой 3 на рис.2 вызвано протеканием пластических деформаций в рабочем сечении образца при растяжении. Причём изменение PBЭ охватило всю область рабочей части образца, достигая максимума в области "шейки". Но уже через 24 часа после деформации приращение PBЭ в центре "шейки" уменьшилось приблизительно на 100 мэВ для алюминия и на 30 - 50 мэВ для сталей.

Известно влияние вакуумного отжига на изменение PBЭ металлов [5]. Отжиг поверхностных дефектов, создаваемых ионной бомбардировкой, вызывал рост PBЭ. Представляет интерес изучение влияния вакуумного отжига деформационных дефектов на изменение PBЭ. Отжиг алюминиевых образцов, деформированных растяжением до 40 % был выполнен в вакууме не хуже $3\cdot 10^{-5}$ мм. рт. ст. при температуре 520^{-0} К в течение двух часов с последующим охлаждением в вакууме. Измерения PBЭ по поверхности образцов выполнялись каждый день, поэтому номер измерения на рис.3 соответствует дню измерения.

Представленные на рис.3 кривые 1 (без УФО) и 2 (УФО) определяют кинетику изменения РВЭ участка поверхности, не испытавшего пластическое деформирование. Воздействие УФО вызывает смещение РВЭ в сторону роста. Кривые 3 (без УФО) и 4 (с УФО) описывают кинетику РВЭ пластически деформированных участков поверхности. Область деформирования определяется начальными участками этих кривых, видно, что РВЭ при этом уменьшается. С течением времени, как уже отмечалось выше, РВЭ выходит на насыщение. Вакуумный отжиг (после 16-ого и 17-ого измерений) значительно увеличивает РВЭ по всей поверхности. Причём изменения РВЭ, вызванные отжигом для деформированной и недеформированной поверхностей, существенно не отличаются.

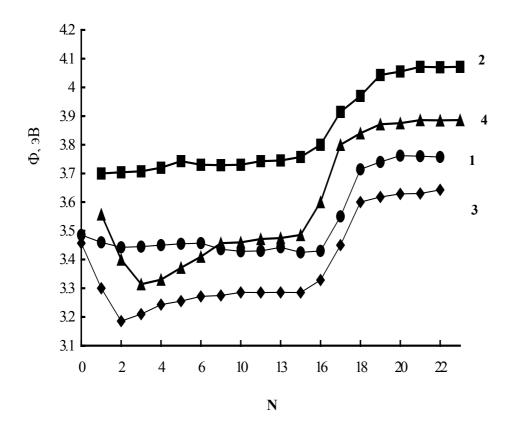


Рис.3. Кинетика РВЭ по поверхности алюминия для различных измерений: на недеформированном участке 1 – без УФО, 2 – с УФО; на деформированном 3 – без УФО, 4 – с УФО.

Процесс отжига вызвал новое энергетическое состояние металлической поверхности и после установления адсорбционно-десорбционного равновесия на поверхности образовались кривые энергетического распределения со значительно большими значениями РВЭ по сравнению с состоянием поверхности до отжига. Обнаружено, что РВЭ для недеформированной части поверхности при УФО приближается к значениям РВЭ для чистого монокристаллического алюминия. Также было замечено, что с течением времени восстановилось геометрическое подобие кривых полученных без УФО и при УФО.

Таким образом, в результате отжига на экспериментальных кривых сохранился деформационный энергетический пик, но кривые сдвинулись в область больших значений РВЭ. Возможным объяснением этого является сохранение различий в атомарной шероховатости участков поверхности, испытавших пластическое деформирование (образование дислокационных ступенек) и участков не затронутых процессом дефектобразования. Поэтому поверхностная составляющая РВЭ, зависящая от распределения электронной плотности на границе металла, приводит к формированию кривой потенциального рельефа поверхности с явно выраженным деформационным пиком. Увеличение же общего уровня РВЭ может быть связано с изменением объёмной составляющей РВЭ, вызванным отжигом структурных дефектов. Возможно, что процесс отжига затронул и кристаллиты, выходящие на свободную поверхность. Известно, что увеличение размеров кристаллитов приводит к росту РВЭ.

Результаты исследования закономерностей изменения PBЭ по поверхности пластически деформируемых металлов позволили установить следующее выражение для приращения PBЭ :

$$\Delta \Phi = \Delta \Phi_0 \left\{ 1 - \exp\left[-\alpha \left(e - e_0 \right) \right] \right\},\tag{1}$$

где α - безразмерный параметр деформирования; e - относительная деформация; e_0 - относительная деформация, соответствующая началу пластического течения материала.

Элементарный акт пластической деформации связан с выходом на свободную поверхность дислокационной моноатомной ступеньки. Уже в объёме кристалла перераспределение электронов в окрестности дислокации приводит к образованию дипольного момента [6,7]. Таким образом можно говорить о переносе дислокационных диполей на свободную поверхность при деформировании.

Зависимость PBЭ от плотности атомарных ступенек на поверх- ности ряда металлов экспериментально исследовалась в работе [8]. Авторы этой работы обнаружили, что зависимость PBЭ от плотности моноатомных ступенек на поверхности кристалла может быть описана следующим выражением:

$$\Delta \Phi = \frac{1}{\varepsilon_0} q \cdot P \cdot n , \qquad (2)$$

Р - дипольный момент на единицу длины поверхностной ступеньки; n - плотность поверхностных ступенек; q - заряд электрона; ϵ_0 - электрическая постоянная. На основании зависимостей (1) и (2) была оценена плотность линейных деформационных диполей на различных участках поверхности образцов из алюминия, в предположении, что каждый из этих диполей пересекает образец поперёк в рабочей части. Результаты расчёта показали, что относительной деформации до 20 % соответствует линейная плотность деформационных диполей (1 - 1,5)·10 7 м⁻¹. Обнаружено, что полученные таким образом значения плотности деформационных диполей совпадают по порядку величины с плотностью тонких следов скольжения для алюминия по данным электронной микроскопии [6].

И в завершение я выражаю свою искреннюю благодарность М. И. Правде за помощь при проведении измерений и проф. В.В.Левитину за постоянный интерес и поддержку при выполнении этой работы.

ВЫВОДЫ

- 1. В работе предложена методика визуализации деформационного рельефа металлических поверхностей на основе измерений распределе- ний КРП по поверхности образцов.
- 2. Показано, что большей степени деформации соответствуют боль-шие изменения РВЭ, а при достижении определённой деформации изме-нение РВЭ достигает предельного значения.
- 3. Исследована кинетика изменения PBЭ пластически деформиро- ванных участков образцов. Показано, что релаксация PBЭ в основном определяется адсорбционно-десорбционными процессами на поверхности. Деформационный рельеф на основе измерений PBЭ сохраняется в течение длительного времени (по нашим данным до 10 месяцев). Влияние вакуумного отжига сказывается на частичном сглаживании деформационного рельефа, но при этом всё ещё сохраняется информация о пластически деформированных участках образцов.
- 4. Показано, что зависимость PBЭ от деформации может быть опи-сана на основе зависимости PBЭ от концентрации адсорбирующихся на поверхности атомов. Полученные при этом оценочные значения

плот-ности линий скольжения вышедших на поверхность дислокаций хорошо согласуются с известными литературными данными.

ЛИТЕРАТУРА

- 1. Craig P.P. Direct observation of stress-indused shifts in contact potentials // Phys.Rev.Lett. 1969. 22, № 14. P. 1093 1096.
- Савицкий Е.М., Буров И.В., Литвак Л.Н. Работа выхода элементов // ДАН СССР. 1974. 218, № 4. -С. 818 - 820.
- 3. Поверхностные свойства твёрдых тел / Под ред. М. Грина. М.: Мир, 1972. 432 с.
- 4. Лоскутов С.В., Левитин В.В., Погосов В.В. Об измерении работы выхода электронов методом динамического конденсатора // Поверхность. 1992. 8.- С.121 123.
- 5. Фоменко В.С. Эмиссионные свойства материалов. Справочник. Киев, Наукова думка, 1981. 340 с.
- 6. Ван Бюрен. Дефекты в кристаллах. М.: Изд. иностранной литературы, 1962 .- 584 с.
- 7. Фридель Ж. Дислокации. М.: Мир, 1967. 644 с.
- 8. Besocke K., Krahl-Urban, Wagner H. Dipole moments associated with edge atoms:a comparative study on stepped Pt, Au and W surfaces // Surface Science.- 1977. 68. P.39 46.