УДК 514.

ЗАСТОСУВАННЯ МЕТОДУ КРАЙОВИХ ЕЛЕМЕНТІВ ДО РОЗВ'ЯЗКУ ЗАДАЧІ РОЗРАХУНКУ НАПРУЖЕНО-ДЕФОРМОВАНОГО СТАНУ В РАЙОНІ ТРІЩИНИ

Саликіна Н. В., Толок В. О.

Аналітичний розв'язок задач про тріщину нормального відриву для смуги скінченних розмірів, навантаженої силами, що розтягують, із крайовою або центральною тріщиною подано в роботі [1] у виді розкладу комплексної функції напружень Вєстєргарда в ряд, при виключенні з якого членів вищих порядків обчислюються напруження, що виникають поблизу тріщини:

$$\sigma_{y} = \frac{K_{1}}{\sqrt{2\pi r}} \cos \frac{\theta}{2} \left(1 + \sin \frac{\theta}{2} \sin \frac{3\theta}{2} \right);$$
(1)
$$\sigma_{x} = \frac{K_{1}}{\sqrt{2\pi r}} \cos \frac{\theta}{2} \left(1 - \sin \frac{\theta}{2} \sin \frac{3\theta}{2} \right) - \sigma;$$

$$\tau_{xy} = \frac{K_{1}}{\sqrt{2\pi r}} \sin \frac{\theta}{2} \cos \frac{\theta}{2};$$

де *K*₁ — коефіцієнт інтенсивності напружень,

r — відстань від вершини тріщини до деякої точки плоского тіла,

 θ — кут між вектором r і віссю абсцис,

 σ — величина сили, рівномірно розподіленої по краю смуги.

Для розв'язку задачі розрахунку напружень і зміщень у районі тріщини пропонується ітераційний алгоритм із використанням методу крайових елементів, описаного в роботі[2]. В основу алгоритму покладена ідея розбивки тіла на 2 області, границею контакту яких є передбачувана лінія поширення тріщини. Запишемо граничне інтегральне рівняння з [3]:

$$\frac{1}{2}u_{j}(\xi) + \int_{\Gamma} \sigma_{ji}^{*}(\xi, x) u_{i}(x) d\Gamma(x) = \int_{\Gamma} u_{ji}^{*}(\xi, x) \sigma_{i}(x) d\Gamma(x); \qquad (2)$$

де $u_{_{ji}}^{*}(\xi, x)$ — функція фундаментальних переміщень,

 $\sigma^*_{_{ii}}(\xi, x)$ — функція фундаментальних напружень.

Думаємо, що досягнуте критичне навантаження, що викликає розрив у небезпечній точці. Уведемо такі позначення: Γ_1 — границя контакту двох областей (рис.1), n_1 — кількість елементів розбивки границі Γ_1 . Нехай *l*-й крайовий елемент містить точку розриву. Визначимо граничні умови на лінії Γ_1 .

На 1-ому кроці ітерації: для першої області думаємо зміщення на Γ_1 рівними нулю. Береги тріщини вільні від напружень, тому в *l*-ому крайовому елементі $\sigma_{i(l)}$ рівні нулю. На кожному кроці ітерації буде виконуватися рівність нулю напружень для *l*-го крайового елемента. Уводячи чисельні апроксимації і замінюючи інтегральне рівняння системою алгебраїчних рівнянь, знаходимо $\sigma_{i(n)}^{(1)}$, $n \neq l$, а також переміщення для *l*-го елемента, а точніше для нижнього берега тріщини.

На границі контакту для 2-ої області задаємо відповідно напруження $\mathbf{\sigma}_{i(n)}^{(1)}$, де $n \neq l$. Аналогічно знаходимо переміщення $\mathcal{U}_{i(n)}^{(2)}$, $n \neq l$ на лінії продовження тріщини, а також зміщення для верхнього

$$\frac{1}{2}u_{j}(\xi) + \int_{\Gamma_{l}} \sigma_{ji}^{*}(\xi, x)u_{i}^{(k)}(x)d\Gamma(x) + \int_{\Gamma\setminus\Gamma_{l}} \sigma_{ji}^{*}(\xi, x)u_{i}(x)d\Gamma(x) = \int_{\Gamma_{l}} u_{ji}^{*}(\xi, x)\sigma_{i}^{(k)}(x)d\Gamma(x) + \int_{\Gamma\setminus\Gamma_{l}} u_{ji}^{*}(\xi, x)\sigma_{i}(x)d\Gamma(x),$$

$$(3)$$

берега тріщини. Переміщення $u_{i(n)}^{(2)}$ будуть відомими граничними умовами на Γ_1 для 1-ої області на другій ітерації Отже, загальне ітераційне граничне рівняння для Γ_1 виглядає так:

k -я ітерація для 1-ої області:

де $u_i^{(k)}$ — відомі величини у вузлових точках границі Γ_1 .

k -я ітерація для 2-ої області:

$$\frac{1}{2}u_{j}(\xi) + \int_{\Gamma_{1}} \sigma_{ji}^{*}(\xi, x)u_{i}^{(k+1)}(x)d\Gamma(x) + \int_{\Gamma_{1}} \sigma_{ji}^{*}(\xi, x)u_{i}(x)d\Gamma(x) = \int_{\Gamma_{1}} u_{ji}^{*}(\xi, x)\sigma_{i}^{(k)}(x)d\Gamma(x) + \int_{\Gamma_{1}} u_{ji}^{*}(\xi, x)\sigma_{i}(x)d\Gamma(x),$$
(4)

де $\sigma_i^{(k)}$ — відомі величини у вузлових точках границі Γ_1 .

Рис.1. Розбивка плоского тіла на дві області

Довжина тріщини в даному алгоритмі дорівнює довжині *І*-г о елемента. Висока концентрація напружень у вершині тріщини, що утворилася, приведе до подальшого росту лінії по У контакту. цьому випадку ітераційна процедура застосовується для розрахунку тріщини, довжина якої включає декілька крайових елементів.

Приведемо результати тестування алгоритму на прикладах деяких задач про тріщину для смуги скінченних розмірів:

1.Смуга шириною w=1см i довжиною S=8см iз двома симетрично розташованими щодо осі ординат крайовими тріщинами

рівномірно навантажена силами, що розтягують σ =500.0Мпа. Верхній край смуги жорстко затиснений (рис.2).

2. Смуга шириною w=0.6см і довжиною S=8см із крайовою тріщиною, верхній край котрої жорстко затиснений, рівномірно навантажена силами, що розтягують σ =500.0Мпа (рис.3).

3. Смуга шириною w=1см і довжиною S=8см із центральною тріщиною верхній край котрої жорстко затиснений, рівномірно навантажена силами, що розтягують σ =500.0Мпа (рис.4).

Коефіцієнт Пуассона v=0.3 і модуль Юнга E=0.2×10⁷. Для розглянутих задач границею контакту є вісь абсцис (рис.1), що випливає з граничних умов навантаження і формул (1) (відповідно до цих формул кут поширення тріщини θ =0). Для демонстрації швидкості збіжності обмежимося розглядом результатів для прикладу (2) (табл.1). Кількість елементів розбивки границі Γ_1 n_1 =12.

Рис.2. Задача про тріщину (1) для лінійно-пружного тіла

Рис.3. Задача про тріщину (2) для лінійно-пружного тіла

Рис.4. Задача про тріщину (3) для лінійно-пружного тіла

	перша область				друга область			
еле- мент	$u_{x}^{(1)}$	$u_{y}^{(1)}$	$\sigma_s^{(1)}$	$\sigma_n^{(1)}$	$u_{x}^{(2)}$	$u_{y}^{(2)}$	$\sigma_s^{(1)}$	$\sigma_n^{(1)}$
1	0.000000	0.000000	-130.8	795.7	-0.000003	0.000902	130.8	795.7
2	0.000000	0.000000	-125.7	433.2	-0.000003	0.000902	125.7	433.2
3	0.000000	0.000000	-87.3	439.3	-0.000003	0.000902	87.3	439.3
4	0.000000	0.000000	-56.4	446.3	-0.000003	0.000902	56.4	446.3
5	0.000000	0.000000	-28.2	455.8	-0.000003	0.000902	28.2	455.8
6	0.000000	0.000000	-1.7	464.4	-0.000003	0.000902	1.7	464.4
7	0.000000	0.000000	24.2	472.8	-0.000003	0.000902	-24.2	472.8
8	0.000000	0.000000	51.6	483.2	-0.000003	0.000902	-51.6	483.2
9	0.000000	0.000000	82.3	502.7	-0.000003	0.000902	-82.3	502.7
10	0.000000	0.000000	123.0	534.1	-0.000003	0.000902	-123.0	534.1
11	0.000000	0.000000	138.6	1009.3	-0.000003	0.000902	-138.6	1009.3
12	0.000006	0.000033	0.0	0.0	-0.000003	0.000869	0.0	0.0
еле- мент	$u_{x}^{(2)}$	$u_{y}^{(2)}$	$\sigma_s^{(2)}$	$\sigma_n^{(2)}$	$u_{x}^{(3)}$	$u_{y}^{(3)}$	$\sigma_s^{(2)}$	$\sigma_n^{(2)}$
1	-0.000003	0.000902	-130.5	795.6	-0.000003	0.000902	130.5	795.6
2	-0.000003	0.000902	-125.6	433.3	-0.000003	0.000902	125.6	433.3
3	-0.000003	0.000902	-87.2	439.4	-0.000003	0.000902	87.2	439.4
4	-0.000003	0.000902	-56.4	446.4	-0.000003	0.000902	56.4	446.4
5	-0.000003	0.000902	-28.2	456.0	-0.000003	0.000902	28.2	456.0
6	-0.000003	0.000902	-1.8	464.6	-0.000003	0.000902	1.8	464.6
7	-0.000003	0.000902	24.2	472.9	-0.000003	0.000902	-24.2	472.9
8	-0.000003	0.000902	51.4	483.3	-0.000003	0.000902	-51.4	483.3
9	-0.000003	0.000902	82.1	502.7	-0.000003	0.000902	-82.1	502.7
10	-0.000003	0.000902	122.8	534.0	-0.000003	0.000902	-122.8	534.0
11	-0.000003	0.000902	138.5	1008.9	-0.000003	0.000902	-138.5	1008.9
12	0.000003	0.000935	0.0	0.0	0.000003	0.000869	0.0	0.0
еле- мент	$u_{x}^{(3)}$	$u_{y}^{(3)}$	$\sigma_s^{(3)}$	$\sigma_n^{(3)}$	$u_{x}^{(4)}$	$u_y^{(4)}$	$\sigma_s^{(3)}$	$\sigma_n^{(3)}$
1	-0.000003	0.000902	-130.2	795.7	-0.000003	0.000902	130.2	795.7
2	-0.000003	0.000902	-125.5	433.3	-0.000003	0.000902	125.5	433.3
3	-0.000003	0.000902	-87.1	439.4	-0.000003	0.000902	87.1	439.4
4	-0.000003	0.000902	-56.4	446.4	-0.000003	0.000902	56.4	446.4
5	-0.000003	0.000902	-28.1	455.9	-0.000003	0.000902	28.1	455.9
6	-0.000003	0.000902	-1.8	464.5	-0.000003	0.000902	1.8	464.5
7	-0.000003	0.000902	24.2	472.9	-0.000003	0.000902	-24.2	472.9
8	-0.000003	0.000902	51.4	483.2	-0.000003	0.000902	-51.4	483.2
9	-0.000003	0.000902	82.1	502.7	-0.000003	0.000902	-82.1	502.7
10	-0.000003	0.000902	122.8	534.0	-0.000003	0.000902	-122.8	534.0
11	-0.000003	0.000902	138.4	1009.0	-0.000003	0.000902	-138.4	1009.0
12	0.000003	0.000935	0.0	0.0	0.000002	0.000869	0.0	0.0

Таблиця 1— Напруження і зміщення на лінії контакту при довжині тріщини, що включає один крайовий елемент

Як видно з таблиці, ми використовуємо усього лише три наближення для досягнення збіжності розв'язку. Швидка збіжність характерна і для розв'язків прикладів (1) і (3). Найбільш важливою характеристикою напружено-деформованого стану у вершини тріщини ϵ розтягуюче напруження σ_n . Саме досягнення ним критичного значення є загальною умовою розриву [4]. Порівняємо результати розрахунку нормальних напружень з аналітичними, обчисленими за формулою (1). Зіставлення розв'язків представимо у виді графіків аналітичної і наближеної функцій розподілу напружень (рис.5, рис.7, рис.9). На рисунках уведені такі позначення: a — довжина граничного елемента, w — ширина розглянутої смуги, u_n і u_c відповідно нормальні і дотичні зміщення. На кожному з рисунків приведені графіки аналітичного і наближеного розподілу нормальних напружень, що відповідають довжині тріщини, рівної а,2а...,6а (тобто що включає n (для задачі (3) — 2n крайових елементів), де n змінюється від 1 до 6). По отриманих графіках щодо всіх розглянутих прикладів видно, що ріст тріщини тягне за собою ріст нормальних напружень. В усіх випадках чисельні результати знаходяться в узгодженні з аналітичним розв'язком за винятком точок, що знаходяться на великій відстані від вершини тріщини, де формули (1) не є точними для визначення напружень удалині від вершини тріщини. Форму тріщини, що поширюється, також можна визначити відповідно до зміщень для нижнього і верхнього берегів тріщини, що відповідають нульовим напруженням. На рис.6,8,10 зображені фраґменти тіла, що деформується, із тріщиною для прикладів (1)-(3).

Рис.5. Розподіл нормальних напружень *σ_n* на лінії продовження тріщини у відповідності з аналітичним (суцільна крива) і наближеним (штрихова крива) розв'язками для прикладу (1)

Рис. 6. Поширення двох симетрично розташованих щодо осі ординат тріщин для прикладу (1)

Рис.7. Розподіл нормальних напружень σ_n на лінії продовження тріщини у відповідності з аналітичним (суцільна крива) і наближеним (штрихова крива) розв'язками для прикладу (2)

Рис.8. Поширення крайової тріщини для прикладу (2)

Рис.9. Розподіл нормальних напружень σ_n на лінії продовження тріщини у відповідності з аналітичним (суцільна крива) і наближеним (штрихова крива) розв'язками для прикладу (3)

Рис.10. Поширення центральної тріщини

Графіки чисельного й аналітичного розв'язків розглянутих задач про тріщину показують узгодженість в околиці вершини тріщини. Моделювання явища нормального відриву для даних конфігурацій дає реальну картину поширення тріщини.

ЛІТЕРАТУРА

- 1. Броек Д. Основы механики разрушения М.:Высшая школа, 1980. –368 с.
- 2. Бреббия К., Теллес Ж., Вроубел Л. Методы граничных элементов М.: Мир, 1987. 524 с.
- 3. Крауч С., Старфилд А. Методы граничных элементов в механике твердого тела М.: Мир, 1987. 328 с.
- 4. Партон В. З., Перлин П. И. Методы математической теории упругости: Учебное пособие М.: Наука, 1981. 688 с.